Finisar

Product Specification

100GBASE-SR10 100m CXP Optical Transceiver Module

FTLD10CE3C

PRODUCT FEATURES

- 12-channel full-duplex transceiver module
- Hot Pluggable CXP form factor
- Multirate capability: 1Gb/s to 11.3Gb/s per channel
- Maximum link length of 100m on OM3 Multimode Fiber (MMF)
- Unretimed CPPI electrical interface
- Requires 3.3V power supply only
- Low power dissipation: < 3.5W
- Reliable VCSEL array technology
- Digital Diagnostics including Tx and Rx optical power monitoring
- Commercial operating case temperature range: 0°C to 70°C
- RoHS-6 Compliant (lead-free)

APPLICATIONS

- Infiniband 12x SDR/DDR/QDR
- 100GBASE-SR10 100G Ethernet
- OTU4/OTU2e
- 12x 10GBASE-SR Ethernet (compatible)
- PCIe (Gen1/2/3)
- SATA3
- Proprietary protocols

Finisar’s FTLD10CE3C second-generation CXP transceiver modules are designed for use in up to 136 Gigabit per second links over 12 duplex multimode fiber pairs. They are compliant with the IBTA CXP Specification\(^1\), IEEE 802.3ba 100GBASE-SR10 and CPPI electrical interfaces\(^2\). The transceiver is RoHS-6 compliant and lead-free per Directive 2002/95/EC\(^3\), and Finisar Application Note AN-2038\(^4\). They support Tx/Rx optical power monitoring functionality. For applications up to 14 Gb/s per channel please contact Finisar.

PRODUCT SELECTION

FTLD10CE3C

E: Ethernet-compliant optical interface
3: Second generation product
C: Commercial temperature rate
I. Pin Descriptions

<table>
<thead>
<tr>
<th>Bottom Side</th>
<th>Top Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O #</td>
<td>Name</td>
</tr>
<tr>
<td>C1</td>
<td>GND</td>
</tr>
<tr>
<td>C2</td>
<td>RX1p</td>
</tr>
<tr>
<td>C3</td>
<td>RX1n</td>
</tr>
<tr>
<td>C4</td>
<td>GND</td>
</tr>
<tr>
<td>C5</td>
<td>RX5p</td>
</tr>
<tr>
<td>C6</td>
<td>RX7p</td>
</tr>
<tr>
<td>C7</td>
<td>RX9p</td>
</tr>
<tr>
<td>C8</td>
<td>RX11p</td>
</tr>
<tr>
<td>C9</td>
<td>GND</td>
</tr>
<tr>
<td>C10</td>
<td>RX7n</td>
</tr>
<tr>
<td>C11</td>
<td>RX9n</td>
</tr>
<tr>
<td>C12</td>
<td>GND</td>
</tr>
<tr>
<td>C13</td>
<td>RX11n</td>
</tr>
<tr>
<td>C14</td>
<td>RX11p</td>
</tr>
<tr>
<td>C15</td>
<td>RX7n</td>
</tr>
<tr>
<td>C16</td>
<td>RX9n</td>
</tr>
<tr>
<td>C17</td>
<td>RX10p</td>
</tr>
<tr>
<td>C18</td>
<td>RX12-RX</td>
</tr>
<tr>
<td>C19</td>
<td>Vcc3.3-RX</td>
</tr>
<tr>
<td>C20</td>
<td>SCL</td>
</tr>
<tr>
<td>C21</td>
<td>Int_L</td>
</tr>
</tbody>
</table>

Figure 1 – CXP-compliant 84-pin connector
<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Name/Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>Tx1p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Tx1n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>A5</td>
<td>Tx3p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Tx3n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>A8</td>
<td>Tx5p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>Tx5n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>A11</td>
<td>Tx7p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>Tx7n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>A14</td>
<td>Tx9p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>Tx9n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>A17</td>
<td>Tx11p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A18</td>
<td>Tx11n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>A19</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>A20</td>
<td>SCL</td>
<td>2-wire serial interface clock</td>
<td></td>
</tr>
<tr>
<td>A21</td>
<td>SDA</td>
<td>2-wire serial interface data</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>B2</td>
<td>Tx0p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>Tx0n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>B5</td>
<td>Tx2p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>Tx2n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>B8</td>
<td>Tx4p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>Tx4n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>B11</td>
<td>Tx6p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>Tx6n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>B14</td>
<td>Tx8p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B15</td>
<td>Tx8n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B16</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>B17</td>
<td>Tx10p</td>
<td>Transmitter Non-Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B18</td>
<td>Tx10n</td>
<td>Transmitter Inverted Data Input</td>
<td></td>
</tr>
<tr>
<td>B19</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>B20</td>
<td>VCC3.3-TX</td>
<td>+3.3 V Power supply transmitter</td>
<td></td>
</tr>
<tr>
<td>B21</td>
<td>VCC12-TX</td>
<td>+12.0 V Power supply transmitter - NOT CONNECTED</td>
<td>2</td>
</tr>
<tr>
<td>C1</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>Rx1p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Rx1n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>C5</td>
<td>Rx3p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>Rx3n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td>C8</td>
<td>Rx5p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>Rx5n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>GND</td>
<td>Ground</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>Rx7p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>Rx7n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>Rx9p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>Rx9n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>Rx11p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>Rx11n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>PRSNT_L</td>
<td>Module Present</td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>Int_L/Reset_L</td>
<td>Interrupt / Reset</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Rx0p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Rx0n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Rx2p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>Rx2n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>Rx4p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>Rx4n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>Rx6p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>Rx6n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>Rx8p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>Rx8n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D17</td>
<td>Rx10p</td>
<td>Receiver Non-Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D18</td>
<td>Rx10n</td>
<td>Receiver Inverted Data Output</td>
<td></td>
</tr>
<tr>
<td>D19</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D20</td>
<td>Vcc3.3-RX</td>
<td>+3.3 V Power supply receiver</td>
<td></td>
</tr>
<tr>
<td>D21</td>
<td>Vcc12-RX</td>
<td>+12.0 V Power supply receiver - NOT CONNECTED</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Circuit ground is internally isolated from chassis ground.
2. 12V power supply not required.
II. General Product Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Form Factor</td>
<td>CXP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>12 Tx and 12 Rx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Aggregate Data Rate</td>
<td>135.816</td>
<td>Gb/s</td>
<td></td>
</tr>
<tr>
<td>Maximum Data Rate per Lane</td>
<td>11.318</td>
<td>Gb/s</td>
<td></td>
</tr>
<tr>
<td>Protocols Supported</td>
<td>Typical applications include Infiniband DDR/QDR, 100GBASE-SR10 Ethernet, OTU4, OTU2e, PCIe-Gen1/2/3, 12x10GBASE-SR Ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Interface and Pin-out</td>
<td>84-pin edge connector</td>
<td></td>
<td>Pin-out as defined by the CXP Specification</td>
</tr>
<tr>
<td>Optical Cable Type Required</td>
<td>Multimode ribbon 24-fiber cable assembly, MPO connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Power Consumption per End</td>
<td>3.5</td>
<td>Watts</td>
<td>Varies with output voltage swing and pre-emphasis settings</td>
</tr>
<tr>
<td>Management Interface</td>
<td>Serial, I2C-based, 400 kHz maximum frequency</td>
<td></td>
<td>As defined by the CXP Specification</td>
</tr>
</tbody>
</table>

Data Rate Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Rate per Lane</td>
<td>BR</td>
<td>1000</td>
<td></td>
<td>11318</td>
<td>Mb/sec</td>
<td>1</td>
</tr>
<tr>
<td>Bit Error Ratio @10.3Gb/s per Lane</td>
<td>BER1</td>
<td></td>
<td>10^-11</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Bit Error Ratio @11.1Gb/s per Lane</td>
<td>BER2</td>
<td></td>
<td>10^-6</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Bit Error Ratio @11.2Gb/s per Lane</td>
<td>BER3</td>
<td></td>
<td>10^-6</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Bit Error Ratio @11.3Gb/s per Lane</td>
<td>BER4</td>
<td></td>
<td>10^-8</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Link distance on OM3 MMF</td>
<td>D1</td>
<td></td>
<td>100</td>
<td>meters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link distance on OM4 MMF</td>
<td>D2</td>
<td></td>
<td>150</td>
<td>meters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Infiniband SDR/DDR/QDR, 100GBASE-SR10 100G Ethernet, OTU2e, OTU4, PCIe Gen1/2/3, 12x10GBASE-SR 10G Ethernet.
2. Tested with a PRBS 2^31-1 test pattern.

III. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Supply Voltage</td>
<td>Vcc1, VccTx, VccRx</td>
<td>-0.5</td>
<td></td>
<td>3.6</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_s</td>
<td>-40</td>
<td></td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Case Operating Temperature</td>
<td>T_OP</td>
<td>0</td>
<td></td>
<td>70</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>RH</td>
<td>0</td>
<td></td>
<td>85</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Non-condensing.
IV. Electrical Characteristics (T_{op} = 0 to 70°C, V_{cc} = 3.3 ± 5% Volts)

NOTE: The FTLD10CE3C requires that a CPPI-compliant CXP electrical connector be used on the host board in order to guarantee its electrical interface specification. Please check with your connector supplier.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vcc1, VccTx, VccRx</td>
<td>3.15</td>
<td></td>
<td>3.45</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>Icc</td>
<td>850</td>
<td>1000</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Total Power</td>
<td>P</td>
<td>3.5</td>
<td>W</td>
<td>1, 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link Turn-On Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter (per Lane)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single ended input voltage tolerance</td>
<td>VinT</td>
<td>-0.3</td>
<td>4.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential data input swing</td>
<td>Vin,pp</td>
<td>120</td>
<td>1200</td>
<td>mVpp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential input threshold</td>
<td></td>
<td>50</td>
<td></td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC common mode input voltage tolerance (RMS)</td>
<td></td>
<td>15</td>
<td></td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential input return loss Per IEEE 802.3ba, Section 86A.4.1.1</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>J2 Jitter Tolerance</td>
<td>Jr2</td>
<td>0.17</td>
<td></td>
<td>UI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J9 Jitter Tolerance</td>
<td>Jr9</td>
<td>0.29</td>
<td></td>
<td>UI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Dependent Pulse Width Shrinkage DDPWS</td>
<td></td>
<td>0.07</td>
<td></td>
<td>UI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye mask coordinates {X1, X2 Y1, Y2}</td>
<td></td>
<td>0.11, 0.31 95, 350</td>
<td></td>
<td>UI</td>
<td>mV</td>
<td>5</td>
</tr>
</tbody>
</table>

Receiver (per Lane)						
Single-ended output voltage		-0.3	4.0	V		
Differential data output swing	Vout,pp	0	800	mVpp	6, 7	
AC common mode output voltage (RMS)		7.5		mV		
Termination mismatch at 1 MHz		5		%		
Differential output return loss Per IEEE 802.3ba, Section 86A.4.2.1				dB	4	4
Common mode output return loss Per IEEE 802.3ba, Section 86A.4.2.2				dB	4	
Output transition time, 20% to 80%		28		ps		
J2 Jitter output	Jo2	0.42		UI		
J9 Jitter output	Jo9	0.65		UI		
Eye mask coordinates {X1, X2 Y1, Y2}		0.29, 0.5 150, 425		UI	mV	5
Power Supply Ripple Tolerance	PSR	50			mVpp	

Notes:
1. Maximum total power value is specified across the full temperature and voltage range.
2. From power-on and end of any fault conditions.
3. After internal AC coupling. Self-biasing 100Ω differential input.
4. 10 MHz to 11.1 GHz range
5. Hit ratio = 5 x 10E-5
6. AC coupled with 100Ω differential output impedance.
7. Settable in 4 discrete steps via the I2C interface. See Figure 2 for Vout settings.
Figure 2 – Transmitter Input Differential Signal Mask

Figure 3 – Receiver Output Differential Signal Mask
Receiver Output Amplitude Settings

<table>
<thead>
<tr>
<th>Code</th>
<th>Receiver Output Amplitude (mV)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Nominal</td>
</tr>
<tr>
<td>1xxxb</td>
<td>650</td>
<td>750</td>
</tr>
<tr>
<td>0111b</td>
<td>550</td>
<td>650</td>
</tr>
<tr>
<td>0101b</td>
<td>450</td>
<td>550</td>
</tr>
<tr>
<td>0100b</td>
<td>350</td>
<td>450</td>
</tr>
<tr>
<td>0011b</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>0010b</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>0001b</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>0000b</td>
<td>150</td>
<td>250</td>
</tr>
</tbody>
</table>

Receiver Pre-Emphasis Settings

<table>
<thead>
<tr>
<th>Code</th>
<th>Pre-emphasis (dB)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111b</td>
<td>4.5 +/- 0.25</td>
<td></td>
</tr>
<tr>
<td>0110b</td>
<td>4.0 +/- 0.5</td>
<td></td>
</tr>
<tr>
<td>0101b</td>
<td>3.5 +/- 0.5</td>
<td></td>
</tr>
<tr>
<td>0100b</td>
<td>3.0 +/- 0.5</td>
<td></td>
</tr>
<tr>
<td>0011b</td>
<td>2.5 +/- 0.5</td>
<td>Default Setting</td>
</tr>
<tr>
<td>0010b</td>
<td>2.0 +/- 0.5</td>
<td></td>
</tr>
<tr>
<td>0001b</td>
<td>1.5 +/- 0.5</td>
<td></td>
</tr>
<tr>
<td>0000b</td>
<td>0.5 +/- 0.25</td>
<td></td>
</tr>
</tbody>
</table>

Module-end, Typical Power Consumption

<table>
<thead>
<tr>
<th>Rx Output</th>
<th>Power (mW)</th>
<th>Pre-Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code</td>
<td>Pre-Emphasis</td>
</tr>
<tr>
<td></td>
<td>0000b</td>
<td>0001b</td>
</tr>
<tr>
<td>Rx Output</td>
<td>Code</td>
<td>Pre-Emphasis</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>0101b</td>
<td>2023</td>
<td>2023</td>
</tr>
<tr>
<td>0110b</td>
<td>2026</td>
<td>2026</td>
</tr>
<tr>
<td>0111b</td>
<td>2026</td>
<td>2026</td>
</tr>
</tbody>
</table>
V. Optical Characteristics (\(T_{OP} = 0\) to 70°C, \(V_{CC} = 3.3 \pm 5\%\) Volts)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter (per Lane)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaling Speed per Lane</td>
<td></td>
<td></td>
<td>11.3</td>
<td>GBd</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Center wavelength</td>
<td></td>
<td></td>
<td>840</td>
<td>GBd</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RMS Spectral Width</td>
<td>SW</td>
<td></td>
<td>0.65</td>
<td>nm</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Average Launch Power per Lane</td>
<td>TXP</td>
<td></td>
<td>-7.6</td>
<td>dBm</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Transmit OMA per Lane</td>
<td>TxOMA</td>
<td></td>
<td>-5.6</td>
<td>dBm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Difference in Power between any two lanes [OMA]</td>
<td>DP</td>
<td></td>
<td>4.0</td>
<td>dB</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Peak Power per Lane</td>
<td>PP</td>
<td></td>
<td>4.0</td>
<td>dBm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Launch Power [OMA] minus TDP per Lane</td>
<td>P-TDP</td>
<td></td>
<td>-6.5</td>
<td>dBm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TDP per Lane</td>
<td>TDP</td>
<td></td>
<td>3.5</td>
<td>dBm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Optical Extinction Ratio</td>
<td>ER</td>
<td></td>
<td>3.0</td>
<td>dB</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Optical Return Loss Tolerance</td>
<td>ORL</td>
<td></td>
<td>12</td>
<td>dB</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Encircled Flux</td>
<td>FLX</td>
<td>> 86% at 19 um</td>
<td></td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 30% at 4.5 um</td>
<td></td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Average launch power of OFF transmitter, per lane</td>
<td></td>
<td></td>
<td>-30</td>
<td>dB</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Relative Intensity Noise</td>
<td>RIN</td>
<td></td>
<td>-128</td>
<td>dB/Hz</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}</td>
<td></td>
<td></td>
<td>0.23, 0.34, 0.43, 0.27, 0.35, 0.4</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Receiver (per Lane)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaling Speed per Lane</td>
<td></td>
<td></td>
<td>11.3</td>
<td>GBd</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Center wavelength</td>
<td></td>
<td></td>
<td>840</td>
<td>GBd</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Damage Threshold</td>
<td>DT</td>
<td></td>
<td>3.4</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Average Receive Power per Lane</td>
<td>RXP</td>
<td></td>
<td>-9.5</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Receive Power (OMA) per Lane</td>
<td>RxOMA</td>
<td></td>
<td>3.0</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Stressed Receiver Sensitivity (OMA) per Lane</td>
<td>SRS</td>
<td></td>
<td>-5.4</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Peak Power, per lane</td>
<td>PP</td>
<td></td>
<td>4</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Receiver Reflectance</td>
<td>Rfl</td>
<td></td>
<td>-12</td>
<td>dB</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Vertical eye closure penalty, per lane</td>
<td></td>
<td></td>
<td>19</td>
<td>dB</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Stressed eye J2 jitter, per Lane</td>
<td></td>
<td></td>
<td>0.3</td>
<td>UI</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Stressed eye J9 jitter, per Lane</td>
<td></td>
<td></td>
<td>0.47</td>
<td>UI</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>OMA of each aggressor lane</td>
<td></td>
<td></td>
<td>-0.4</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Receiver jitter tolerance [OMA], per Lane</td>
<td></td>
<td></td>
<td>-5.4</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Rx jitter tolerance: Jitter frequency and p-p amplitude</td>
<td></td>
<td></td>
<td>(75, 5)</td>
<td>kHz, UI</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(375, 1)</td>
<td>kHz, UI</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LOS De-Assert</td>
<td>LOSD</td>
<td></td>
<td>-12.5</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LOS Assert</td>
<td>LOSA</td>
<td></td>
<td>-30.0</td>
<td>dBm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LOS Hysteresis</td>
<td></td>
<td></td>
<td>1</td>
<td>dB</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Transmitter consists of 12 lasers operating at a maximum rate of 11.3Gb/s each.
2. Even if TDP is <0.9dB, the OMA min must exceed this value.
3. RIN is scaled by 10*log (10/4) to maintain SNR outside of transmitter.
4. Receiver consists of 12 photodetectors operating at a maximum rate of 11.3Gb/s each.
VI. Memory Map and Control Registers

VII. Environmental Specifications

Finisar FTLD10CE3C transceiver modules have an operating temperature range from 0°C to +70°C case temperature.

<table>
<thead>
<tr>
<th>Environmental Specifications</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Operating Temperature</td>
<td>T_{op}</td>
<td>0</td>
<td></td>
<td>70</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{st}</td>
<td>-5</td>
<td></td>
<td>75</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

VIII. Regulatory Compliance

Finisar FTLD10CE3C transceiver modules are RoHS-6 Compliant. Copies of certificates are available at Finisar Corporation upon request.

FTLD10CE3C transceiver modules are classified as Class 1 laser eye safety compliant per IEC 60825-1.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Agency</th>
<th>Standard</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Eye Safety</td>
<td>FDA/CDRH</td>
<td>CDRH 21 CFR 1040 and Laser Notice 50</td>
<td>0620885-043</td>
</tr>
<tr>
<td>Electrical Safety</td>
<td>TÜV</td>
<td>EN 60950:2006+A11</td>
<td>R72120958</td>
</tr>
<tr>
<td>Electrical Safety</td>
<td>UL/CSA</td>
<td>CLASS 3862.07</td>
<td>2397145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLASS 3862.87</td>
<td></td>
</tr>
</tbody>
</table>

Copies of the referenced certificates are available at Finisar Corporation upon request.
IX. Mechanical Specifications

The FTLD10CE3C transceiver module mechanical specifications are based on the CXP Specification.

Figure 3 – FTLD10CE3C mechanical drawing

Figure 4 – FTLD10CE3C production-level product label
X. References

2. IEEE 802.3ba, PMD Type 100GBASE-SR10

XI. For More Information

Finisar Corporation
1389 Moffett Park Drive
Sunnyvale, CA 94089-1133
Tel. 1-408-548-1000
Fax 1-408-541-6138
sales@finisar.com
www.finisar.com